Quasicircles and quasiperiodic surfaces in pseudo-hyperbolic spaces

نویسندگان

چکیده

We study in this paper quasiperiodic maximal surfaces pseudo-hyperbolic spaces and show that they are characterised by a curvature condition, Gromov hyperbolicity or conformal hyperbolicity. the limit curves of these Einstein Universe admits canonical quasisymmetric parametrisation, while conversely every curve bounds surface such way parametrisation is continuous extension uniformisation; we give applications results to asymptotically hyperbolic surfaces, rigidity Anosov representations version universal Teichmüller space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic surfaces of $L_1$-2-type

In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.

متن کامل

Moduli spaces of hyperbolic surfaces and their Weil–Petersson volumes

Moduli spaces of hyperbolic surfaces may be endowed with a symplectic structure via the Weil–Petersson form. Mirzakhani proved that Weil–Petersson volumes exhibit polynomial behaviour and that their coefficients store intersection numbers on moduli spaces of curves. In this survey article, we discuss these results as well as some consequences and applications.

متن کامل

Ten Colours in Quasiperiodic and Regular Hyperbolic Tilings

Colour symmetries with ten colours are presented for different tilings. In many cases, the existence of these colourings were predicted by group theoretical methods. Only in a few cases explicit constructions were known, sometimes using combination of two-colour and five-colour symmetries. Here we present explicit constructions of several of the predicted colourings for the first time, and disc...

متن کامل

Hyperbolic spaces in Teichmüller spaces

We prove, for any n, that there is a closed connected orientable surface S so that the hyperbolic space H almost-isometrically embeds into the Teichmüller space of S, with quasi-convex image lying in the thick part. As a consequence, H quasi-isometrically embeds in the curve complex of S.

متن کامل

Spheres and hyperbolic spaces

The group-invariant geometry on real and complex n-balls is hyperbolic geometry, in the sense that there are infinitely many straight lines (geodesics) through a given point not on a given straight line, thus contravening the parallel postulate for Euclidean geometry. We will not directly consider geometric notions, since the transitive group action determines structure in a more useful form. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 2023

ISSN: ['0020-9910', '1432-1297']

DOI: https://doi.org/10.1007/s00222-023-01182-9